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It is shown that hydraulic characteristics in a fluidized bed oscillate 
in a spectrum that is discrete due to the reciprocal effect of the fluidi- 
zation regime on gas-blower operation. 

Fluidization at any fluidizing-agent filtration velocity is accompanied by more or less 
intensive, stable pulsations of the hydrodynamic parameters. Here, aggregates of particles 
(packets) and low-density zones (bubbles) periodically form and disintegrate in the bed. 
The motion of the particles is random and is characterized by small-scale pulsations. Super- 
imposed on these pulsations are low-frequency oscillations of global characteristics of the 
bed such as its total height and the pressure drop in the bed. Present discussion revolves 
around the existence of a set of mechanisms responsible for these pulsations, and all of 
them evidently actually exist in fluidized beds [1-3]. Foremost among these mechanisms is 
turbulent pulsation of the fluidizing gas, which generates small-scale pulsations of particle 
motion. A second mechanism consists of pulsations caused by nonuniformity of the speed of 
the rotor. These two types of pulsations are characterized by a relatively high frequency 
and low energy. From a practical standpoint of fluidized bed use, it is most important to 
study low-frequency pulsations occurring in the bed due to the presence of collective effects 
(packets, bubblers) in it. According to current representations, these collective effects 
are generated by the system itself (the model of a "gravitational pendulum" with a frequency 
f ~ s [i]) or are a consequence of the effect of the volume of the space under the grate - 
which acts as a resonator - on the fluidization regime [2, 4, 5]. A fluidized bed, being a 
medium with distributed inertia and elasticity, also permits the propagation of pressure, 
concentration, and velocity waves in it (these waves being nonlinear in the general case). 

The present study examines one more mechanism of oscillation generation in a fluidized 
bed. This mechanism is associated with the reciprocal effect of the fluidization regime 
on the operation of the gas blower. Henceforth in studying the stability of homogeneous, 
steady-state fluidization (which is actually not realized) in which a uniform flow of fluidi- 
zing gas keeps stationary particles in a suspended state at certain distances from one 
another, we write the unidimensional equations of motion and continuity for the particles 
in a continuum approximation: 
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The fluidizing gas will be assumed to be incompressible and moving at a constant velo- 
city u over the cross section of the unit, the velocity being calculated for an e.mpty unit. 
Also assuming the particles to be incompressible and ignoring mass exchange between the 
phases and particle fragmentation and coalescence, we obtain the following condition for 
conservation of the total volume of particles in a bed of height h 

h 

[ (1 - - ~ )  dz = h o ( t - - e  o) ~-- consl. ( 2 )  

Ignoring the compressibility of the gas, we write the equation expressing the feedback 
in the gas-blower-fluidized-bed system in the form 
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Fig. i. Comparison of experi- 
mental and theoretically calcul- 
ated frequencies of oscillation 
in different fluidized beds. The 
material of the particles- glass: 
I) d = 0.9; 4) 0.5 mm; corundum: 
2) d = 0.5; 3) 0.63 mm, fexpt; 
ftheor, Hz. 

I 3 5 ftheor' Hz 
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Ape .... Ap~ q- {' F (v, ~., u) dz. ( 3 )  
b 

Here, APe is the pressure drop created by the source of the gas flow. Its magnitude is 
usually prescribed by the head characteristic, which is described by a quadratic flow-rate 
function [6]. The resistances along the bed and the local resistances Apt are also general- 
ly quadratic functions of the flow rate of the gas. The integral in (3) gives the resist- 
ance to the flow of the fluidizing gas attributable to a fluidized bed of height h. There 
is a sufficient number of experimental approximations and theoretical relations for the func- 
tion F(v, e, u), which describes the local hydrodynamic interaction between the fluidizing 
gas and the particles. We will use Ergan's empirical formula [7], it being the most accurate 
and being applicable to a broad range of fluidization regimes. However, we will assume 
that it is applicable not only to the stationary bed as a whole, but also locally, i.e., if 
the investigated section of a bed of thickness Az is moving at a velocity v and the gas in- 
side this bed is moving at the velocity u/e, then the resistance of the bed will be: 

= v -4- 1,75 Po(1--~:) u 
d"e 2 de e 

E q u a t i o n s  ( 1 - 4 )  c o n s t i t u t e  a s y s t e m  o f  u n i d i m e n s i o n a l  e q u a t i o n s  o f  a f l u i d i z e d  bed  w i t h  
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Then system (1-4) takes the form 
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Without consideration of the feedback (the fourth equation of system (6)), the above- 
formulated problem is analogous to the problem of forced oscillations of a bed that was 
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examined in [3]. In that study, however, phase interaction was described by a different 
method than here. Allowing for feedback significantly alters the solution of the system. 
In particular, as will be shown below, spontaneous oscillations of the gasdynamic quantities 
with a discrete set of frequencies and wave numbers develop in the system. 

We will study the behavior of the solution of system (6) near a homogeneous steady state 
which, as is easily seen, is determined by the relations 

V=-V ~ O, U -~U", e -~,  H = : H  ~ ( 7 )  

where ~0 and U ~ are connected by the relations 

(eop _~_ BU%O _ BU o ( l +-  U ~ .... O, ( 8 ) 

which here is nothing more than the well-known relation between fluidization velocity and 
bed expansion. 

The solution of (7) for system of nonlinear equations (6) is a singular point. The type 
of singularity and its stability can be determined after linearization of the initial sys- 
tem of equations in the neighborhood of the singular point [8]. Introducing small deviations 
from the steady-state solution V', U', r and H', we obtain the following from (6) 
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System (9) is satisfied by solutions in the form of waves for a particle velocity V'(~, 
T) and for porosity r T): 

pUo 
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with the boundary condition V'(n = 0) = 0. The quantity U 0' is the amplitude of the pertur- 
bation of fluidized-bed velocity. The wave vector ~ is related to the frequency ~ by the 
equation 

= ~  ps ~  , ( 1 2 )  
q (1 - -  e ~ 

from which we find expressions for the complex phase and group sonic velocities in the flui- 
dized bed: 

q (1 - -  e ~ dQ q 0 - -  s~ 
aph= ~ PS~ - / ~  , a ~ - -  d~ p e ~  (13) 

From the fourth equation of system (9) we obtain an algebraic expression to calculate the 
spectrum of permissible values of the wave number ~ or, with allowance for (12), the oscilla- 
tion frequency: 

i\(H ~ prn2 ( 1 - - V l + i n ~ )  = 1 - - e x p ( - - i H ~  ( 1 4 )  

where 

4q (1 - -  s e) 
n - -  
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Finding the roots of Eq. (14), we determine @ in (12) and calculate the permissible 
frequencies ~ of small oscillations in a uniform fluidized bed. The frequencies are complex 
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in the general case and their imaginary parts will, in accordance with (ii), determine the 
time behavior of the perturbations. Here, if the imaginary part of the frequency turns 
out to be negative, then the amplitude of the oscillation mode will increase until non- 
linear effects begin to have a significant effect on the behavior of the system. The sub- 
sequent behavior of the system cannot be described within the framework of a linear approxi- 
mation. Under certain conditions the system will evidently enter a limiting cycle (of 
oscillation) which may be manifest by the establishment of a pistonlike fluidization regime. 
Under other conditions, nonlinearity should lead to loss of stability of the wave fronts, 
which begin to break up and result in the formation of bubbles and packets. In this case, 
the group velocity of the waves Cg r may be identified with the surfacing velocity of the 
bubbles in the bed. In terms of order of magnitude (about 0.25 m/sec), this was confirmed 
by numerical calculation with (13) and by comparison with experimental measurements of 
bubble surfacing velocity taken from [9]. 

To check the above theoretical findings, we conducted an experiment to measure low-fre- 
quency pulsations of the pressure drop in a fluidized bed, the frequency of these pulsations 
in a linear formulation coinciding with the frequency of waves of particle velocity and 
porosity. Here, we first recorded the head characteristic of the gas blower in two regimes. 
The pressure-drop pulsations were recorded with a strain gage and a loop oscillograph. The 
oscillograms were analyzed numerically by the method described in [i0]. The fluidized bed 
consisted of a glass column with an inside diameter of 58 mm and a perforated grate. The 
particles were glass beads 0.5 and 0.9 mm in diameter and corundum beads with an effective 
diameter of 0.5 and 0.63 mm. As the air-flow source we used two gas blowers with quite 
different head characteristics. The height of the loose bed was i00 mm in all of the tests. 
Statistical analysis of the oscillograms revealed the presence of low-frequency (< i0 Hz) 
oscillations of pressure drop in the bed. We then numerically found the real and imaginary 
parts of the complex frequencies from (14) and (12) and known parameters of the head charac- 
teristics K~, K 2, and K for the specific conditions of the experiments. We considered only 
those frequencies with a negative imaginary part. The empirically obtained spectra of oscil- 
lation frequencies in the bed naturally turned out to be more saturated than the theoretical 
spectra, which is due to the presence of different mechanisms of oscillation generation in 
the actual bed besides the mechanism examined theoretically. Nevertheless, oscillation 
modes with frequencies near those calculated theoretically could be reliably picked out in 
the experimental spectrum. The results of comparison of the theory with the experiment are 
shown in Fig. i, from which it is evident that the difference between the experimental and 
theoretical frequencies of self-sustained oscillations in different beds is not greater than 
2O%. 

NOTATION 

t, z, time and vertical coordinate, respectively; v, particle velocity; u, velocity of 
fluidizing gas; e, porosity; g, acceleration due to gravity; F, force of hydrodynamic inter- 
action between gas and particles per unit of bed height; h, height of fluidized bed; APe, 
head created by source of flow of fluidizing gas; APt, hydraulic resistance of supply main; 
d, particle diameter; P0, u0, density and absolute viscosity of the fluidizing gas; Pl, den- 
sity of the particle material; kl, k=, k3, constants of the head characteristic of the gas 
blower; k,, constant of the hydraulic resistance of the supply main; T, ~, dimensionless 
time and vertical coordinate; U, V, H, dimensionless gas velocity, particle velocity, and 
bed height, respectively; r b, B, KI, K2, and K, complexes determined in (5); ~, dimen- 
sionless wave number; S, dimensionless frequency; ap, a~r, phase and group sonic velocities; 
p, q, r, complexes determined in (10). Indices: subscrlpt 0, state of loose bed; super- 
script 0, state of homogeneous fluidization; ', deviation from state of homogeneous fluidiza- 
tion; i = /------[. 
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CALCULATION OF MASS TRANSPORT IN NONISOTHERMAL 

EVAPORATION OF LIQUIDS FROM CAPILLARIES WITH 

CONSIDERATION OF VARIABLE VISCOSITY OF THE 

VAPOR-GAS MIXTURE 

N. I. Gamayunov and A. A. Lankov UDC 532.72:536.423.1 

The principles of vapor transport in a cylindrical capillary with temper- 
ature gradient are studied. Expressions are found for vapor flux and 
pressure of the mixture above the liquid meniscus in various evaporation 
regimes. 

We will consider a cylindrical capillary of radius r, filled by a liquid, from the open 
surface of which evaporation occurs. We direct a Coordinate axis from the mouth of the chan- 
nel (x = 0) toward the liquid meniscus (x = 0 We assume that the partial vapor pressure 
at the channel mouth P01 is constant and always less than the saturated vapor pressure at 
the liquid meniscus temperature Ps[T(~)]. The temperature varies along the capillary axis 
linearly, T(x) = T o + VTx. The binary gas mixture into which the liquid evaporates consists 
of molecules of vapor (first component) and gas (second component). We will perform the 
analysis with the assumption that the medium is continuous (Kn ~ i) and that the flow of 
the vapor-gas mixture within the capillary is steady-state and one-dimensional. Thermodif- 
fusion and barodiffusion components of the flow will not be considered because of their 
smallness. 

In the general case in which no limitations are imposed on the vapor transport regime 
and it is necessary to consider both the hydrodynamic flow of the vapor-gas mixture and in- 
terdiffusion of the components, the densities of the steady-state vapor and gas flows in a 
coordinate system fixed to the capillary are described by the following equations: 

]1 = - -  D (x) dp, (x) r"pl (x) dP (x) __ const. (1) 
dx 8~1 (x) dx 

/2 ~ - -  D (x) dpz (x) r P2 (x) d P  (x) 0 ( 2 )  
dx 8q (x) dx 
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